Model Parameter Estimation and Uncertainty Analysis
نویسندگان
چکیده
منابع مشابه
Probabilistic inversion of a terrestrial ecosystem model: Analysis of uncertainty in parameter estimation and model prediction
[1] The Bayesian probability inversion and a Markov chain Monte Carlo (MCMC) technique were applied to a terrestrial ecosystem model to analyze uncertainties of estimated carbon (C) transfer coefficients and simulated C pool sizes. This study used six data sets of soil respiration, woody biomass, foliage biomass, litterfall, C content in the litter layers, and C content in mineral soil measured...
متن کاملWatershed model parameter estimation and uncertainty in data-limited environments
Parameter uncertainty and sensitivity for a watershed-scale simulation model in Portugal were explored to identify the most critical model parameters in terms of model calibration and prediction. The research is intended tohelpprovideguidance regardingallocationof limiteddata collection andmodel parameterization resources for modelers working in any data and resource limited environment. The wa...
متن کاملParameter estimation and uncertainty quantification for an epidemic model.
We examine estimation of the parameters of Susceptible-Infective-Recovered (SIR) models in the context of least squares. We review the use of asymptotic statistical theory and sensitivity analysis to obtain measures of uncertainty for estimates of the model parameters and the basic reproductive number (R0)---an epidemiologically significant parameter grouping. We find that estimates of differen...
متن کاملInterval Technique for Parameter Estimation under Model Uncertainty
This paper is devoted to the problem of estimation of parameters for linear multioutput models with uncertain regressors and additive noise. The uncertainty is assumed to be described by intervals. Outer-bounding interval approximations of the non-convex feasible parameter set for uncertain system are obtained. The proposed method is based on the calculation of the interval solution for an inte...
متن کاملQuantifying uncertainty in state and parameter estimation.
Observability of state variables and parameters of a dynamical system from an observed time series is analyzed and quantified by means of the Jacobian matrix of the delay coordinates map. For each state variable and each parameter to be estimated, a measure of uncertainty is introduced depending on the current state and parameter values, which allows us to identify regions in state and paramete...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Medical Decision Making
سال: 2012
ISSN: 0272-989X,1552-681X
DOI: 10.1177/0272989x12458348